Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>1.1 Basic method of measuring RCMs</td>
<td>14</td>
</tr>
<tr>
<td>1.2 Definitions</td>
<td>14</td>
</tr>
<tr>
<td>1.2.1 Definitions from IEC 62020 (clause in brackets – see also chapter 7.2.2 of this book):</td>
<td>15</td>
</tr>
<tr>
<td>1.2.2 Other Definitions:</td>
<td>15</td>
</tr>
<tr>
<td>2 Introduction to Residual Current Monitoring – RCM</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Basic method of measuring RCMs</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Definitions</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1 Definitions from IEC 62020 (clause in brackets – see also chapter 7.2.2 of this book):</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2 Other Definitions:</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Residual current protective device (RCD) and residual current monitor (RCM)</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Increasing popularity</td>
<td>17</td>
</tr>
<tr>
<td>3 Protection of Electrical Installations and Equipment</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Common aspects for installations and equipment</td>
<td>19</td>
</tr>
<tr>
<td>3.1.1 Scope</td>
<td>19</td>
</tr>
<tr>
<td>3.1.2 Fundamental rule of protection against electric shock</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Elements of protective measures</td>
<td>20</td>
</tr>
<tr>
<td>3.2.1 Basic protection</td>
<td>20</td>
</tr>
<tr>
<td>3.2.2 Fault protection</td>
<td>20</td>
</tr>
<tr>
<td>3.2.3 Enhanced protective provisions</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Protective measures</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Co-ordination of electrical equipment and of protective provisions within an electrical installation</td>
<td>21</td>
</tr>
<tr>
<td>3.5 Special operating and servicing conditions</td>
<td>22</td>
</tr>
<tr>
<td>3.6 Protective measures implementation by protective provisions</td>
<td>22</td>
</tr>
<tr>
<td>4 Electrical Installations</td>
<td>25</td>
</tr>
<tr>
<td>4.1 Protection against electric shock</td>
<td>25</td>
</tr>
<tr>
<td>4.1.1 Protection against both direct and indirect contact</td>
<td>26</td>
</tr>
<tr>
<td>4.1.1.1 SELV and PELV</td>
<td>26</td>
</tr>
<tr>
<td>4.1.1.2 Arrangement of circuits</td>
<td>27</td>
</tr>
<tr>
<td>4.1.1.3 Requirements for unearthed circuits (SELV)</td>
<td>27</td>
</tr>
<tr>
<td>4.1.1.4 Requirements for earthed circuits (PELV)</td>
<td>28</td>
</tr>
<tr>
<td>4.1.1.5 FELV system</td>
<td>28</td>
</tr>
<tr>
<td>4.1.1.6 Protection by limitation of steady-state touch current and charge</td>
<td>28</td>
</tr>
<tr>
<td>4.1.2 Protection against electric shock under normal conditions</td>
<td>28</td>
</tr>
<tr>
<td>(protection against direct contact or basic protection)</td>
<td>28</td>
</tr>
</tbody>
</table>
4.1.2.1 Insulation of live parts ... 29
4.1.2.2 Barriers or enclosures .. 29
4.1.2.3 Obstacles .. 29
4.1.2.4 Placing out of reach ... 30
4.1.2.5 Additional protection by residual current protective devices (RCDs) .. 30
4.1.3 Protection against electric shock under fault conditions (protection against indirect contact or fault protection) 31
4.1.4 Equipotential bonding .. 32
4.1.4.1 Main equipotential bonding 33
4.1.4.2 Supplementary equipotential bonding 33
4.2 Types of distribution systems 33
4.3 Types of system earthing .. 34
4.3.1 TN system .. 37
4.3.1.1 Protective measures and protective devices in TN systems .. 37
4.3.2 TT system .. 37
4.3.2.1 Protective measures and protective devices in TT systems .. 37
4.3.3 IT system .. 38
4.3.3.1 Protective measures and protective devices in IT systems .. 38
4.4 Design and effectiveness of the supplementary equipotential bonding .. 40
4.5 Other protective measures ... 41
4.5.1 Class II equipment or equivalent insulation 41
4.5.2 Non-conducting location ... 41
4.5.3 Protection by earth-free local equipotential bonding 41
4.5.4 Electrical separation .. 41

5 Insulation Resistance ... 43
5.1 Meaning of insulation resistance 44
5.2 Insulation resistance – a complex system 46
5.3 Influences on insulation resistance 46
5.4 IEC definitions ... 47
5.4.1 More about residual current 49
5.5 Costs and consequences of low resistance 49
5.6 Information advantage of unearthed systems 50
5.7 More competitiveness through preventive maintenance 53

6 Effects of Shock Current on Humans 55
6.1 Technical report IEC 60479, Effects of current on human beings and livestock .. 56
6.1.1 Electrical impedance on the human body 57
6.2 Effects of electrical current in the range of 15 Hz to 100 Hz 58
6.2.1 Effects of AC current ... 58
6.2.2 Effects of DC current ... 60
6.3 Electro-pathological findings .. 62
6.4 Consequences for protective measures against shock current flow . 63
6.5 Accidents involving electrical current 63

7 Residual Current Monitors (RCMs) .. 67
7.1 The distinction between residual current monitor (RCM) and insulation monitoring device (IMD) 67
7.2 Residual current monitor (RCM) according to IEC 62020:1998-08 68
7.2.1 Scope ... 68
7.2.2 Definitions (IEC 62020) .. 69
7.2.2.1 Pulsating direct current ... 69
7.2.2.2 Energizing quantity ... 69
7.2.2.3 Energizing input-quantity .. 69
7.2.2.4 Residual operating current 69
7.2.2.5 Residual non-operating current ($I_{\Delta no}$) 69
7.2.2.6 RCMs functionally independent of line voltage 70
7.2.2.7 RCMs functionally dependent on line voltage 70
7.2.2.8 RCM type A ... 70
7.2.2.9 Operation .. 70
7.2.3 Classification .. 70
7.2.4 Characteristics of RCM .. 70
7.2.5 Marking and other product information 71
7.2.6 Requirements for construction and operation 71
7.2.7 Tests ... 72
7.2.8 Conclusion .. 72
7.3 Principles ... 72
7.4 New definitions .. 72

8 Residual Current Monitor (RCM) in Earthed Systems 75
8.1 Residual current monitoring in various systems 75
8.2 Measuring technique of residual current monitor (RCM) 78
8.2.1 Wiring diagram of a residual current monitor (RCM) 79
8.3 Examples for the application of residual current monitor (RCM) . 80
8.3.1 Operational safety in industrial power supply 80
8.3.2 Protection from potential differential in the information technology 81
8.3.3 Protection of installations for information technology systems 83
8.3.4 Controlling biasing current in electrical installations 84
8.3.5 Monitoring portable electrical equipment 85
8.3.6 Fire hazard through fault currents 86
8.3.7 Protection against fire by preventive installation measures 89
8.3.8 Monitoring of electrical installations according to German standard DIN VDE 0105 and BGV A2 89
8.3.9 Electrical installations in medical locations according to IEC 60364-7-710:2002-11 .. 91
8.4 Earth-fault detection with RCM technology ... 93
8.4.1 Earth-fault detection with RCM technology in a branched system 93

9 RCM Monitoring in Earthed Systems with DC Fault Currents 95
9.1 Examples of applications for direct current residual current monitor (RCM) ... 96
9.1.1 Electrical power installations according to EN 50178:1997 with electronic equipment ... 96
9.1.2 Monitoring of battery recharge stations ... 98
9.1.3 Monitoring of resistance welding installations 99
9.1.4 A word on the method of measurement .. 99

10 Application of Residual Current Monitor (RCM) in IT Systems 101
10.1 Fault location in IT systems ... 101
10.1.1 Method of scanning with IMD and current transformer (CT) 102
10.1.2 Method of directionally discriminating RCMs 102
10.2 Standards for insulation fault location in IT systems 102
10.3 Securing the operating current .. 103
10.4 Practical application of residual current monitor (RCM) in IT systems ... 103
10.5 Metrology (measurement technique) of directionally discriminating residual current monitoring devices (RCMs) 105

11 Prospects ... 109

12 Standard Recommendations Regarding Residual Current Monitor (RCM) ... 111
12.1.1 IEC 60364-4-41 Ed.5/CDV:2003 ... 111
12.2 IEC 60364-7-710:2002-11 ... 112

13 List of abbreviations ... 113

Key Words .. 115